SHUTTLE CRITICAL ITEMS LIST - ORBITER

SUBSYSTEM :ACTIVE THERMAL CONTROL FMEA NO 06-3C -0223 -3 REV:08/29/35

ASSEMBLY : FREON THERMAL LOOP

CRIT. FUNC:

P/N RI :XC250-0001-0120

CRIT. HDW: 103 104

P/N VENDOR: SV753512

· VEHICLE 102 EFFECTIVITY: X х

QUANTITY :1 :ONE WITH DUAL LOOP

LO X OO X DO X LS PHASE(S): PL

:OPERATION

REDUNDANCY SCREEN: A-PASS B-PASS C-PASS

PREPARED BY: DES

. APPROVED, BX : / O. TRANCAT DES

REL ŌΞ

D. RISING WA REL

W. SMITH NO DE

APPROVED BY (NASA): REL AUB Dang

ITEM:

HEAT EXCHANGER, PAYLOAD (FREON/PAYLOAD INTERFACE).

FUNCTION:

THE PAYLOAD HEAT EXCHANGER TRANSFERS WASTE HEAT FROM TWO PAYLOAD COCLAST LOOPS TO THE FREON COOLANT LOOPS.

.../\

PAILURE MODE:

INTERNAL LEAKAGE, FREON TO FREON.

CAUSE(S):

CORROSION, VIBRATION, MECHANICAL SHOCK.

EFFECT(S) ON:

- (A) SUBSYSTEM (B) INTERFACES (C) MISSION (D) CREW/VEHICLE
- (A) THE TWO FRECK COOLANT LOOPS BECOME INTERCONNECTED RESULTING IN TRANSFER OF COCLANT FROM ONE LOOP TO THE OTHER UNTIL PRESSURE IN BOTH LOOPS IS EQUALIZED.
- (B) NO EFFECT.
- (C) POSSIBLE LOSS OF MISSION. EARLY MISSION TERMINATION FOR FIRST FAILURE.
- (D) SECOND ASSOCIATED FAILURE (EXTERNAL LEAKAGE OF EITHER FREON COOLANT LOOP) WILL CAUSE LOSS OF ALL VEHICLE COOLING AND MAY RESULT IN LOSS OF CREW/VEHICLE.

DISPOSITION 4 RATIONALE:

(A) DESIGN (B) TEST (C) INSPECTION (D) FAILURE HISTORY (E) OFERATIONAL USE

(A) DESIGN

THE HEAT EXCHANGER IS MADE FROM STAINLESS STEEL AND NICKEL BRONZE ALLOYS, WHICH ARE CORROSION RESISTANT AND COMPATIBLE WITH FC-40 AND FREE 21, AND CONTAINS NO MOVING PARTS SUBJECT TO MEAR. THE FLOW HEADERS ARE MACHINED FROM A SINGLE PIECE STAINLESS STEEL BAR. THE HEADERS ARE WELD: TO THE CORE, WHICH IS MADE OF STACKED PLATE-FIN STAINLESS STEEL PARTING SHEETS (THICKNESS = 0.005 INCH). DISIGN PROOF PRESSURE IS 1.5 AND SURS? PRESSURE IS 2.0 TIMES MAXIMUM OPERATING PRESSURE.

SHUTTLE CRITICAL ITEMS LIST - ORBITER

SUBSYSTEM :ACTIVE THERMAL CONTROL FMEA NO 06-3C -0223 -3 REV:08/29/8

(B) TEST

QUALIFICATION TEST - QUALIFICATION TESTED FOR 100 MISSION LIFE. THE HEAT EXCHANGER WAS SUBJECTED TO A PROOF/RUPTURE TEST FOR QUALIFICATION. DESIGN PROOF IS 575 PSIG AND UNIT DID NOT RUPTURE UNTIL 2440 PSIG (MAXIMUM PAYLOAD COOLANT OPERATING PRESSURE IS 200 PSIA). VIBRATION TESTED AT 0.075 G²/HZ FOR 52 MIN/AXIS, SHOCK TESTED AT +/- 20 G EACH AXIS.

ACCEPTANCE TEST - CORE IS LEAK TESTED PRIOR TO INSTALLING HEADER ASSEMBLE AND AGAIN IN ATP.

OMRSD - FCL'S LEAK CHECKED FRIOR TO EACH FLIGHT. FLUID USE CONTROLLED THE SE-8-0073.

(C) INSPECTION

RECEIVING INSPECTION

RAW MATERIAL AND PURCHASED COMPONENTS REQUIREMENTS ARE VERIFIED BY INSPECTION. PARTS PROTECTION IS VERIFIED BY INSPECTION.

CONTAMINATION CONTROL

SYSTEMS FLUID ANALYSES FOR CONTAMINATION ARE VERIFIED BY INSPECTION. CONTAMINATION CONTROL FLAN IS VERIFIED BY INSPECTION. CONTAMINATION CONTROL PROCESSES AND CLEAN AREAS ARE VERIFIED BY INSPECTION.

ASSEMBLY/INSTALLATION

MANUFACTURING, INSTALLATION, AND ASSEMBLY OPERATIONS ARE VERIFIED BY INSPECTION. SHEET METAL PARTS ARE INSPECTED AND VERIFIED BY INSPECTION. SURPACE FINISHES VERIFIED BY INSPECTION. DIMENSIONS VERIFIED BY INSPECTION.

CRITICAL PROCESSES

WELDING IS VERIFIED BY INSPECTION. ALL WELDS ARE STRESS RELIEVED AFTER WELDING, VERIFIED BY INSPECTION. BRAZING IS VERIFIED BY INSPECTION.

MONDESTRUCTIVE EVALUATION

HEADER WELDS TO THE TUBES ARE PENETRANT AND X-RAY INSPECTED. OTHER WELDS (MOUNTING PADS AND HEADER WELDS TO THE CORES) ARE PENETRANT AND LOX MAGNIFICATION VISUALLY INSPECTED. BRAZES ARE VERIFIED BY PROOF AND LEAK TESTS.

TESTING

INSPECTION VERIFIES THAT RESULTS OF ACCEPTANCE TESTING AND FLOWRATES ARE WITHIN SPECIFIED LIMITS.

HANDLING/PACKAGING

EANDLING AND PACKAGING REQUIREMENTS VERIFIED BY INSPECTION.

-- -- --

(D) FAILURE HISTORY NO FAILURE HISTORY.

S50220Y ATTACHMENT -Page 124 of 2

SHUTTLE CRITICAL ITEMS LIST .- ORBITER

SUBSYSTEM :ACTIVE THERMAL CONTROL FMEA NO 06-3C -0223 -3 REV:08/29/

(E) OPERATIONAL USE

GROUND CONTROLLER WILL IDENTIFY HARDWARE FAILURE. PUMP INLET PRESSURES
CONVERGE AND ACCUMULATOR QUANTITIES DIVERGE. BOTH LOOPS WILL OPERATE
NORMALLY. A LEAK IN EITHER LOOP WILL CAUSE LOSS OF BOTH LOOPS.
THEREFORE, FAILURE IS TREATED AS LOSS OF ONE FREON LOOP. ENTRY AT NEXT
PRIMARY LANDING SITE.